История информационных технологий

Век полупроводников, микроэлектроники


В 1883 году Т.А. Эдисон пытался увеличить срок службы осветительной лампы с угольной нитью накаливания. Он ввел в баллон лампы, из которой откачан воздух, металлический электрод. К выводу впаянного электрода и одному из выводов раскаленной электрическим током нити он подсоединил батарею и гальванометр. Стрелка гальванометра отклонялась, когда к электроду подсоединялся плюс батареи, а к нити - минус. При смене же полярности ток в цепи прекращался.

Этот эксперимент привел Эдисона к фундаментальному научному открытию, которое стало основой работы всех электронных ламп и всей электроники дополупроводникового периода.

Открытое им явление впоследствии получило название - термоэлектронная эмиссия.

В 1905 году этот "эффект Эдисона" стал основой британского патента Джона Флеминга на "прибор для преобразования переменного тока в постоянный" - первую электронную лампу-диод, открывшую век электроники.

В 1907 году американский инженер Ли де Форест ввел в лампу третий электрод - управляющую сетку. Эта лампа получила название "аудион", а впоследствии - "триод". Такая лампа могла уже работать в качестве усилителя колебаний, а с 1913 года на ее основе был создан генератор незатухающих колебаний.

Создание электронных ламп дало толчок бурному развитию в 1910-1920-х гг. радиосвязи и радиовещания, а появление в 1930-х гг. передающих (иконоскопов) и приемных (кинескопов) электронно-лучевых приборов обусловило возникновение электронного телевидения.

В результате сформировалась технология приборов вакуумной электроники, появились заводы по производству таких приборов, положившие начало развитию электронной промышленности. До 1960-х гг. вакуумная электроника представляла практически всю электронику.

А.Ф. Иоффе сделал ряд классических работ в области физики твердого тела, особенно в области полупроводников, исследовать которые он начал первым в мире. А ведь в начале 1930-х годов они считались бесперспективными. Он организовал лабораторию полупроводников, которая затем превратилась в научно-исследовательский институт и целое направление в науке (рис. 3.35).


Рис. 3.35.  А.Ф. Иоффе

Первым полупроводниковым материалом в электронике стал селен. В 1873 году американский физик У. Смит открыл эффект изменения сопротивления селенового столбика под действием света. На этой основе был создан первый полупроводниковый прибор - фоторезистор. В 1874 году немецкий физик К.Ф. Браун открыл одностороннюю проводимость контакта металла - полупроводника. Это привело в 1900-1905 гг. к использованию полупроводников в кристаллических детекторах для демодуляции радиотелефонных сигналов.

Одним из первых начал экспериментировать с кристаллическими детекторами-генераторами О.В. Лосев (1903-1942). Олег Владимирович Лосев обессмертил свое имя двумя открытиями: он первым в мире показал, что полупроводниковый кристалл может усиливать и генерировать высокочастотные радиосигналы; он открыл электролюминесценцию полупроводников, т.е. испускание ими света при протекании электрического тока. В 1923 году он получил патент на детекторный приемник - гетеродин (кристадин). Еще при ранних исследованиях детекторов в 1923 году он заметил, что при пропускании тока некоторые из них испускают свет. Особенно ярко светились карборундовые детекторы. В Ленинграде Лосев (рис. 3.36) и занялся изучением и объяснением этой электролюминесценции, в значительной степени в содружестве и при поддержке Физико-технического института, возглавляемого академиком А.Ф. Иоффе.


Рис. 3.36.  О.В. Лосев

Наследник А.Ф. Иоффе по Физико-техническому институту (Физтеху) и его сегодняшний директор Ж.И. Алферов (рис. 3.37) в 2000 году получил Нобелевскую премию за работы в области полупроводниковых гетероструктур и созданию современной полупроводниковой оптоэлектроники и полупроводниковой лазерной техники. На их основе работают лазерные проигрыватели и многие другие современные электронные приборы.


Рис. 3.37.  Ж.И. Алферов

Толчком к развитию полупроводниковой электроники явилось изобретение в 1948 году американцами У. Шокли, У. Браттейном и Дж. Бардиным транзистора - полупроводникового прибора для усиления, генерирования и преобразования электрических колебаний, выполненного на основе монокристаллического полупроводника. Транзистор (от англ. transfer - переносить и resistor - сопротивление) - трехполюсный полупроводниковый электронный прибор, изменяющий свое сопротивление при приложении напряжения на управляющий электрод, что позволяет управлять мощной цепью при помощи слабого сигнала. Благодаря этому свойству транзистор применяется для усиления, коммутации и преобразования электрических сигналов. Позднее транзисторы заменили вакуумные лампы в большинстве электронных устройств, свершив революцию в создании интегральных схем и компьютеров.

В 1951 году в Силиконовой долине, к югу от Сан-Франциско (Silicon Valley, от silicon - английского названия кремния, основного элемента, применяющегося при производстве полупроводников) был создан крупный научно-промышленный центр. Занимает полосу в 56 км в длину и 16 км в ширину, протянувшуюся с северо-запада на юго-восток, и включает города Сан-Хосе, Пало-Альто, Санта-Клара, Лос-Альтос, Санни-Уэлли. В Силиконовой долине самая высокая в мире концентрация предприятий электронной промышленности.

В Силиконовой долине действуют свыше 3 тысяч фирм. Сотни из них выпускают компьютеры, около тысячи специализируются на программном обеспечении. Здесь работают около 40% американских инженеров, занятых в сфере информационных технологий. Здесь же расположен Стэнфордский университет. Технологии и продукция Силиконовой долины в необычайно короткий срок изменили мир, насытив его современными микропроцессорами, компьютерами, цифровыми фото- и видеокамерами, сотовыми телефонами и др.

Подробный рассказ об элементах и устройствах полупроводниковой техники - в главе "История компьютера".

Почти весь XX век прошел с электронно-лучевыми передающими (иконоскопами) и приемными (кинескопами) приборами. Кинескопы нашли массовое применение в телевизорах и мониторах персональных компьютеров. Но представить себе портативную видеокамеру с иконоскопом невозможно, так же как кинескоп - в качестве индикатора в портативных часах или сотовом телефоне. Электронно-лучевые приборы непригодны для этих целей ни по габаритам, ни по физическим характеристикам. Все-таки это высоковольтные приборы.

В 1969 году исследователи из Bell Laboratories - Уиллард Бойл (Willard Boyle) и Джордж Смит (George Smith) сформулировали идею прибора с зарядовой связью (ПЗС) для регистрации изображений. В 1973 году компания Fairchild начала промышленный выпуск ПЗС-матриц. Они были черно-белыми и имели разрешение всего 100х100 пикселей.

Прибор с зарядовой связью (ПЗС), или Charge Coupled Device (CCD), представляет собой микросхему, состоящую из соединенных между собой полупроводниковых конденсаторов. Каждый из конденсаторов держит определенный заряд. С помощью управляющей электрической схемы эти заряды определенным, синхронизированным во времени образом последовательно, по цепочке сдвигаются с одного конденсатора на другой, соседний. ПЗС-матрица является миниатюрным полупроводниковым прибором, служащим для преобразования оптического изображения в аналоговый электрический сигнал. В результате получается аналоговый электрический сигнал, соответствующий отснятому изображению. Пройдя через аналогово-цифровой конвертор (Analogue-Digital Converter, ADC) информация преобразуется в цифровую форму, после чего ее можно сжимать, сохранять и обрабатывать разными способами.

Чтобы получить полноцветное изображение, возможны два пути. Один из них - при помощи призм и фильтров разбить поступающий через объектив свет на цветовые составляющие, а затем отправить красную, зеленую и синюю составляющие на отдельные матрицы CCD.

Второй путь - использовать один CCD, но поместить перед ним мельчайший фильтр с отдельной цветовой ячейкой для каждого пикселя. В результате получается CCD с набором вертикальных красных, зеленых и синих полос. Пиксели группируются в тройки: каждый из них передает свое собственное значение яркости, а цветовая составляющая вычисляется как среднее из трех значений.

Приборы с зарядовой связью стали основой для современной любительской видеосъемки и цифровой фотографии.

Жидкие кристаллы - вещества, способные изменять ориентацию молекул под воздействием электрических полей, - открыл в 1888 г. австрийский ботаник Ф. Рейнитцер. Вместе с немецким кристаллографом Ф. Леманом они описали необычные свойства жидких кристаллов. Это произошло задолго до изобретения кинескопа. Однако, как иногда случается, ученые не обратили особого внимания на необычные свойства этих жидкостей. Впервые советские ученые В.К. Федерикс и В.Н. Цветков в 1930-х годах исследовали их необычные электрические и оптические характеристики.

В 1930-м году исследователи из британской корпорации Marconi получили патент на их промышленное применение. Первый настоящий прорыв совершили ученые Фергесон и Вильямс из корпорации RCA (Radio Corporation of America). Первый из них создал на базе жидких кристаллов термодатчик, используя их избирательный отражательный эффект, а второй изучал воздействие электрического поля на жидкие кристаллы. В 1966 году корпорация RCA продемонстрировала прототип LCD (Liquid Crystal Display) - цифровые часы. Значительную роль в развитии LCD-технологии сыграла корпорация Sharp. Она и до сих пор находится в числе технологических лидеров. Первый в мире калькулятор был произведен в 1964 г. именно этой корпорацией. В октябре 1975 года уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 1970-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. Так, в 1976 году Sharp выпустила черно-белый телевизор с экраном диагонал ью 5,5 дюйма, выполненным на базе LCD-матрицы, с разрешением 160х120 пикселей.

Работа ЖКД (LCD) основана на явлении поляризации светового потока. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полям и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами. Действие жидкокристаллического LCD-монитора (или любого индикатора, например часов или калькуляторов) основано на использовании вещества, находящегося в жидком состоянии, но при этом обладающего некоторыми свойствами кристаллических тел. Молекулы таких жидких кристаллов под действием электрического поля способны изменять свою ориентацию и свойства проходящего сквозь них светового луча. Пользуясь этим свойством, в жидкокристаллических индикаторах, изменяя электрическое напряжение и ориентацию молекул, создают изображение.

LCD-монитор имеет несколько слоев, содержащих между собой тонкие слои жидких кристаллов. Панель монитора подсвечивается источником света. В зависимости от его расположения панели работают или на отражение, или на прохождение света. В цветных мониторах цвет получается с помощью трех фильтров.

В компьютерных LCD-мониторах используются так называемые нематические или супернематические жидкие кристаллы. Нематические элементы способны поворачивать плоскость поляризации на угол до 90 градусов, а супернематические - до 270 градусов. Супернематические кристаллы обладают высоким быстродействием и контрастностью. Они применяются для пассивных индикаторов. Нематические кристаллы используются в высококачественных цветных мониторах.

В пассивных индикаторах элементы располагаются на пересечениях сетки проводников, к которым подводится электрическое поле путем переключения транзисторов, подключенных к этим проводникам. Такие элементы имеют эффект последействия, поэтому движущиеся предметы на них расплываются.

В активных жидкокристаллических TFT-экранах (Thin Film Transistor - тонкопленочный транзистор) каждый элемент снабжается транзистором. Эти транзисторы управляют приложенным напряжением и быстрее переключаются.

В цветных жидкокристаллических экранах элементы группируют по три (в вертикальный ряд). Каждые такие три элемента образуют пиксель. Каждый элемент имеет светофильтр. Транзисторы управляют количеством проходящего света, образуя нужную смесь цветов.

Недостатком пассивных мониторов является возможность смотреть на них только во фронтальной позиции, а экран с активной матрицей имеет угол обзора 120-160 градусов и обладает хорошей яркостью и контрастностью изображения. Первые LCD-мониторы выпускались только для портативных ПК с диагональю экрана 8 дюймов. Сегодня LCD-мониторы для портативных ПК имеют по диагонали 15 дюймов, а для настольных - 19 и более дюймов (рис. 3.38).


Рис. 3.38.  LCD-монитор

Экран такого LCD-монитора (или телевизора) представляет собой матрицу ЖК-элементов. В пассивной матрице ЖК-элементов выбранная точка изображения активируется подачей напряжения на соответствующие прозрачные адресные проводники-электроды строки и столбца.

В этом случае невозможно достичь высокого контраста изображения, так как электрическое поле возникает не только в точке пересечения адресных проводников, но и на всем пути распространения тока. Эта проблема вполне разрешима при использовании так называемой активной матрицы ЖК-элементов, когда каждой точкой изображения управляет свой электронный переключатель. LCD-мониторы, в отличие от СRT-мониторов, являются полностью цифровыми приборами. Однако приходится обеспечивать их совместимость с аналоговыми СRT-мониторами. Для этого цифровой сигнал от системного блока компьютера сначала преобразуется в видеокарте в аналоговый сигнал, а затем снова в цифровой - уже в самом LCD-мониторе. Для преодоления этого неестественного положения уже созданы первые цифровые видеокарты.

Несомненным преимуществом LCD-мониторов по сравнению с CRT-мониторами является почти полное отсутствие вредного излучения, которому подвергается человек, работающий перед экраном электронно-лучевой трубки, а недостатком - пока еще весьма высокая цена, которая, однако, довольно быстро снижается по мере увеличения выпуска LCD-мониторов.

Стандарты безопасности, которым эти мониторы должны отвечать, - TCO или MPRII, разработанные в Швеции.

К преимуществам экранов TFT относятся отличная фокусировка, отсутствие геометрических искажений и ошибок совмещения цветов. Кроме того, у них никогда не мерцает экран. В этих дисплеях не используется электронный луч, рисующий слева направо каждую строку на экране. Когда в ЭЛТ этот луч переводится из правого нижнего в левый верхний угол, изображение на мгновение гаснет (обратный ход луча). Напротив, пиксели дисплея TFT никогда не гаснут, они просто непрерывно меняют интенсивность своего свечения.

Экран, который не мерцает, гораздо меньше утомляет глаза.

Несомненным преимуществом жидкокристаллического экрана является маленькая толщина экрана, составляющая всего около 20 мм, по сравнению с толщиной ЭЛТ-экрана монитора персонального компьютера или телевизора, составляющей 200 и более мм. Особенно важна малая толщина жидкокристаллического экрана в миниатюрных электронных приборах, таких как сотовый телефон, карманный компьютер и др.

Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в электронных часах, а затем их стали использовать в мониторах для портативных компьютеров. Прежде всего они были задействованы в ноутбуках, а затем и в настольных персональных компьютерах. А сегодня они нашли массовое применение в дисплеях карманных компьютеров, сотовых телефонов, электронных записных книжек, коммуникаторов, цифровых фото- и видеокамер, дисплеях всей бытовой электроники.

Плазменные панели появились в 1999 году. Они используются только в качестве мониторов телевизоров.

Работа плазменного (PDP - Plasma Display Panels) монитора похожа на работу неоновой лампы. Он выполнен в виде плоской стеклянной трубки, заполненной инертным газом под низким давлением. Внутри трубки помещены два электрода. При подаче напряжения между ними зажигается электрический (так называемый тлеющий) разряд и возникает свечение. В плазменных экранах пространство между двумя стеклянными поверхностями заполняется, как и в неоновой лампе, инертным газом - аргоном или неоном. На стеклянную поверхность помещают маленькие прозрачные электроды, на которые подается высокочастотное напряжение: образуется целое поле миниатюрных точечных неоновых лампочек. Под действием напряжения в газовой области, прилегающей к электроду, возникает электрический разряд. Плазма этого разряда излучает свет в ультрафиолетовом диапазоне спектра, а он, в свою очередь, вызывает свечение частиц люминофора в видимой человеком части спектра. То есть каждый пиксель на экране работает подобно лампе дневного света.


Рис. 3.39.  Плазменный экран

Преимуществами плазменных экранов являются высокая яркость, контрастность и очень большой угол обзора - до 180 градусов. У них отсутствует дрожание картинки, так как она выводится не по строчкам, а прямо в цифровом виде. Размер плазменных экранов достигает 100 см при толщине всего 8,5-9 см, то есть его, как картину, можно поставить на стол или повесить на стену. Плазменные экраны (телевизоры), так же как и жидкокристаллические, являются полностью цифровыми приборами.

<

Содержание раздела